
RNS Generator:

User Guide

 This RNS Generator emulates the use of the processor described in

[Pedro Thesis] in order to generate the required assembly instructions for two the

major asymmetrical cryptographic algorithms: RSA and ECC.

 The main window is depicted in Figure 1, where the selected algorithm is

RSA. Here, the input fields are in the form of a decimal integer, as described next:

 Msg – is the message to cipher (or decipher);

 Key – is the private or public key, depending on the operation;

 Modulo – is the value of the RSA modulo.

The above fields can be randomized by selecting the button Random, for

demonstration purposes. The following input is always required:

 Bits – is the number of bits of the Modulo, Key and Modulo, denoted

<M>;

 Number of bits per channel – is the number of bits on each RNS channel,

denoted <n>.

 By clicking Start the tool then generates the required number of channels

per RNS base and displays them in the section bellow. Each white square

represents a RNS channel and displays the instruction being computed by such

channel. The first line represents the operation, while the other represent the

destination register, register A and register B, in this order.

 Now the user has the possibility to perform a step by step analysis of the

instructions being sent to each RNS channel by clicking on the button Next, or,

in the other hand, can jump to the end of the computations by clicking the End

button.

 As soon as the result is computed it is displayed in the Result field. At the

same time, 5 output files are written to the folder where the RNS generator is

located. They are:

 “key<M>-n<n>-assemblyRSA.txt” – containing the pseudo-code assembly

instructions;

 “key<M>-n<n>-codeRSA.txt” – containing the assembly instructions in

hexadecimal to be fed to the processor;

 “key<M>-n<n>-dataRSA.txt” – containing the application specific

constants and data to be fed to the processor;

 “key<M>-n<n>-moduliRSA.txt” – containing information about the RNS

moduli set in use, as well as original the Msg, Key and Modulo;

 “key<M>-n<n>-resultRSA.txt” – containing the expected result, in

hexadecimal.

Figure 1 – RNS Generator Interface: RSA

 Alternatively, an equivalent for ECC can be selected in the upper left

corner of the window. The window is depicted in Figure 2, where the input fields

are:

 Curve ‘a’ – is the parameter a of the elliptic curve, as in 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏;

 Curve ‘b’ – is the parameter b of the elliptic curve equation;

 Point ‘x’ coordinate – is the ‘x’ coordinate of the curve point to be

multiplied by a scalar;

 Point ‘y’ coordinate – is the ‘y’ coordinate of the curve point to be

multiplied by a scalar;

 Scalar to multiply – is the scalar to multiply by the curve point mentioned

above;

 GF(p) – is the modulo on which the elliptic curve is built.

 For demonstration purposes, an example setup for the above mentioned

parameters can be selected by activating the Example button. Similarly to the

RSA tab, the following input is always required:

 Bits – is the number of bits of the Modulo, Key and Modulo, denoted

<M>;

 Number of bits per channel – is the number of bits on each RNS channel,

denoted <n>.

 The rest of the behavior is to the RSA counterpart.

 For more information on how these algorithms are implemented please

refer to [Juvenal Thesis].

Figure 2 – RNS Generator Interface: ECC

Developing for the RNS processor

 A user intending to develop a different application for the RNS processor

can write his algorithm using the provided functions, driving the tool to generate

the correspondent assembly instructions for the considered RNS processor.

 The class Rns corresponds to a number represented in RNS format in the

registers of the processor. It offers:

 Conversion from binary to RNS, using the constructor

Rns(String value, String name);

 RNS addition, subtraction and multiplication between two Rns objects,

using respectively add(Rns b, Rns destination),

sub(Rns b, Rns destination) and

mult(Rns b, Rns destination);

 Modular multiplication based on the RNS Montgomery Multiplication,

using modularMult(Rns b, Rns destination).

Note that the modular operation can only be performed in relation to a

single modulo, defined in the beginning of the program. Both operands

must be represented in the Montgomery Domain (MD);

 Modulo operation, based in the RNS Montgomery Multiplication, using

modulo(Rns destination). Note that the modulo is the same as

described before. The operand must be represented in the MD;

 Conversion from RNS to binary, using toIntMRC().

 An RNS program computing only a multiplication will be detailed as

example, defining the generic workflow for developing for the tool:

1. The developer starts configuring the hardware by selecting the operand

bit width and the bit width of each RNS channel, as well as the name for

the XML file with the hardware description:

Main. createModuliSet(64, 16, "mult.xml");

In this case, the operands will be 64 bits long, and each RNS channel will

have 16 bits. The hardware configuration will be written to mult.xml.

Alternatively, a developer may use

Main.loadModuliSet("mult.xml"); in order to load the hardware

configuration from an existing XML file. The structure for the XML file is

described in the next subsection.

2. Now, the developer calls Main.createFiles("MULT"); in order for the

program to create the output files, in this case appended by MULT.

3. Next, the user creates the RNS numbers, converting from decimal to

RNS:

Rns A = new Rns("70000","A");

Rns B = new Rns("51000","B");

BigInteger C_bin;

Rns C = new Rns("C");

Here, the variable C is reserved without setting its value.

4. The RNS multiplication 𝐶 = 𝐴 × 𝐵 can now be performed:
A.mult(B, C);

5. Following, the number must be converted back to binary:

C_bin = C.toIntMRC();

6. Finally, the user must close the output files by calling:

Main.closeFiles();

 This example, and another ones performing Modular Multiplication, can be

found in the project package examples.

 For more information on how these methods are implemented and the

RNS Modular Multiplication please refer to [Juvenal Thesis].

XML file

 The XML file containing the hardware configuration must start with the

opening tag <RNS>. Afterwards, it is expected the information about the number

of registers in the co-processor, between the tag <maxNumberOfRegisters>,

then the information about the size of the operands the RNS is set to represent,

between the tag <dynamicRange_nBits>, and then the number of bits per

modulus, between the tag <channelLenght>.

 Following, the opening tag <bases> is expected setting as attribute the

numberOfbases parameter, indicating the number of bases of the co-processor.

In the moment only the value "2" is supported.

Next, in order to specify the moduli set for each base, the opening tag

<moduliSet> is used with the attribute numberOfModuli indicating the number

of moduli per base for the first base. This number is then used to read the values

between tags <k> indicating the value for k as in 2𝑏𝑖𝑡𝑠𝑃𝑒𝑟𝑀𝑜𝑑𝑢𝑙𝑢𝑠 − 𝑘.

 After setting the value of k for numberOfModuli times, the closing tag

</moduliSet> is expected. A new <moduliSet> following the same rules as

before for the second base.

 Now that both bases are described, the closing tag </bases> is expected.

 The document can end now using the closing tag <RNS>, or optionally the

RNS constants for the co-processor inner working can be set using the opening

tag <constants>. Each constant is declared opening the <constant> tag with

attributes name and numberOfBases representing respectively the name of the

constant and the number of bases on which this constant is to be set.

 The opening tag <base> is used to set the values for the RNS channels,

represented between tags <chi>, where i is the number of the channel.

 Unless generated by the tool, the XML file without constants is the most

commonly used for providing the hardware configuration. An example of a XML

file without constants is presented next. Refer to a XML file generated by the tool

for an example with constants configuration.

